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Proton tunnelling in polyatom ic m olecules:

a direct-dynam ics instanton approach

WILLEM SIEBRAND, ZORKA SM EDARCHINA,

MAREK Z. ZGIERSKI and ANTONIO FERN ÂANDEZ-RAMOS

Steacie Institute for Molecular Sciences, National Research Council of Canada,

Ottawa, K1A 0R6 Canada

In this review we discuss a recently introduced method of calculating hydro-

gen tunnelling rates and tunnelling splittings in medium and large molecules. It
is a non-empirical, direct-dynamics method that uses ab initio quantum-chemical

output as input data for the calculation of dynamic properties by means of the
instanton approach. This approach is based on the recognition that there is a

single path that dominates the tunnelling rate. This so-called instanton trajec-
tory is the path that minimizes the classical action. Although it is very di� cult

to calculate this trajectory for multidimensional systems, it will be shown that
the corresponding instanton action, which is the quantity of practical interest,

can be obtained with su� cient accuracy to reproduce experimental observations
without the explicit evaluation of the instanton trajectory. In this approxima-

tion scheme the instanton action is calculated from the one-dimensional action
through the introduction of appropriate correction terms for all modes cou-

pled to the tunnelling mode. These coupled transverse modes are taken to be
harmonic oscillators; the couplings are assumed to be linear and derived from

the displacements of the transverse modes between the equilibrium con® gura-
tion and the transition state. Nonlinear couplings of large-amplitude transverse

modes are also brie¯ y discussed. The reaction coordinate is identi® ed with the
normal mode with imaginary frequency in the transition state and not with

the minimum-energy path used in variational transition-state theory. The multi-
dimensional potential-energy surface is formulated in terms of the normal co-

ordinates of the transition state. Formulas and computer codes are presented
which allow direct evaluation of mode-speci® c tunnelling splittings as well as

of proton transfer rate constants across symmetric or asymmetric barriers as
a function of temperature. Results are presented for these rates and splittings

that can be critically compared with experimental data. Mode-speci® c splittings
are discussed for 9-hydroxyphenalenone and tropolone, two large molecules for

which excellent experimental data are available. Tunnelling rate constants are dis-
cussed for aziridine, oxiranyl and dioxolanyl, three medium-size molecules that

undergo inversion by a tunnelling mechanism, and for porphine, a large molecule
for which an abundance of high-quality proton-transfer data has been reported.

All of these systems are handled successfully by the method. The calculations
are performed with the DOIT (dynamics of instanton tunnelling) code, which is

available on the internet. This dynamics code is very e� cient compared to other
available codes based on transition-state theory with tunnelling corrections and

takes only a fraction of the computer time required for the computation of the
quantum-chemical input data.
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1. Introduction

Proton transfer is an elementary step common to many chemical reactions,

including those important in enzymatic processes. Nevertheless our understanding

of the dynamics of proton transfer lags behind that of transfer of heavier nuclei, the

reason being that light particles such as protons are subject to strong quantum eŒects

and hence cannot be treated satisfactorily by classical mechanics. Most prominent

among these eŒects is the ability of a proton to tunnel through a potential-energy

barrier, thereby avoiding passage through the transition state. As a consequence,

the temperature dependence of a tunnelling reaction cannot be used to measure the

height of the barrier. Typically, this temperature dependence assumes the form of

a curved Arrhenius plot, in which the slope of the logarithm of the rate constant

plotted against the inverse temperature varies from zero for very low temperatures

to a value representing the barrier height for very high temperatures. Although

in the past it was often assumed that proton tunnelling was a low-temperature

phenomenon that can be ignored at room tempature, it is becoming increasingly

clear that tunnelling remains the prevailing mechanism of proton transfer in most

temperature regions of practical interest. This follows from studies of the kinetic

isotope eŒect. Because in the series protium, deuterium, tritium the classical character

increases in proportion to the atomic weight, a strong decrease in the transfer rate or

the corresponding spectral splitting upon substitution of a heavier hydrogen isotope

is prima facie evidence for tunnelling. Such kinetic isotope eŒects have long been

used to analyse reaction mechanisms.
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Proton tunnelling in polyatomic molecules 7

Another aspect of the low atomic weight of hydrogen is the relationship between

the motion of the proton and the vibrational frequencies of the heavier atoms

between which the proton is transferred. Before and after transfer, the proton

vibrates with a frequency that is generally high compared to these frequencies, so

that vibrational averaging over the heavy-atom motions is not permitted. Unless

these frequencies are so low that they can be treated classically, it will be necessary

to treat the tunnelling as a multidimensional process involving many degrees of

freedom. This in fact has been the greatest impediment to the development of a

quantitative theory of tunnelling dynamics. It has been well recognized that one-

dimensional barriers, which remain popular as a means to arrange kinetic data, are

inadequate for an ab initio description of tunnelling dynamics. To obtain a physically

relevant picture, it is necessary to include at least one other degree of freedom and,

depending on the system, to add coupling to a classical heatbath. Several such

treatments have been reported, based on transition-state theory [1± 6] , classical-

trajectory calculations [7± 12] , the Golden Rule [13 ± 15] , or on the instanton [16 ± 18]

method. In these treatments the additional degree of freedom (or the heatbath)

represents the transverse vibrations of the system by means of empirical parameters.

In this review we discuss a more ambitious method [19 ± 26] that includes all

vibrational degrees of freedom through parameters calculated by ab initio meth-

ods. It is based on the instanton approach. Earlier multidimensional treatments

based on variational transition-state theory with semiclassical tunnelling corrections

(VTST/ ST) [1± 6] were found to have several drawbacks that are avoided in the new

approach. Thus VTST/ ST requires a basically arbitrary choice between two limiting

paths, an adjusted minimum-energy path (small-curvature approximation [5] ) or a

straight path (large-curvature approximation [6] ), whereas the instanton approach is

based on the correct minimum-action path. Furthermore, VTST/ ST fails in the low-

temperature limit, where it does not yield a temperature-independent rate constant,

and it is unsuitable for the calculation of tunnelling splittings of vibrationally excited

levels of transverse modes [25] . It may be argued that for temperatures of practical

interest, e.g. for enzymatic reactions, VTST/ ST remains satisfactory. However the

VTST/ ST method is very demanding in CPU time and therefore limited to relatively

small systems or low-level quantum-chemical methods. The method we present is at

least of equal accuracy at these temperatures and orders of magnitude more e� cient.

Hence it can deal successfully with large systems, the main limitation being the level

of complexity that can be handled by the available quantum-chemical methods.

This method, based on the instanton approach, has been reported in a series

of papers [19 ± 26] , in each of which a speci® c molecule or group of molecules was

treated ab initio. It is a direct-dynamics method: the output of quantum-chemical

calculations serves as direct input for the calculation of tunnelling splittings of

ground and excited levels and of tunnelling rates as a function of temperature. The

method is very e� cient and allows treatment of systems of any size that can be han-

dled quantum-chemically. For most purposes it requires calculation of the structure

and vibrational force ® eld in stationary points only. The dynamics calculations are

performed with the DOIT (dynamics of instanton tunnelling) code [27] .

In the following sections we present an introduction to instanton theory and its

adaptation to multidimensional proton transfer. Before considering the instanton

formalism, we introduce a novel representation of the potential-energy surface that

is specially useful for proton tunnelling. The instanton formalism is presented in

two parts. In the main text we provide a simpli ® ed description that emphasizes the

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
6
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



8 W. Siebrand et al.

qualitative features of the method and in the Appendix we provide additional

algebraic details. For the remainder of this review we focus on a number of

applications intended to give an overall picture of our present understanding of

proton tunnelling dynamics.

2. Potential-energy surfaces

To describe the transfer, we require a potential-energy surface that can be

evaluated by quantum-chemical methods. The reaction of interest is the transfer of

a light particle between two much heavier particles. Since the proton moves generally

much faster than the atoms to which it is or becomes attached, the correct lowest-

order description of the transfer process starts from a frozen skeletal structure and

not from a structure that is vibrationally averaged over the skeletal vibrations. This

implies that the reaction coordinate s used as the reference trajectory in variational

transition-state theory [1, 4] , which, apart from minor modi® cations, amounts to

the adiabatic minimum-energy path, is not a good starting point for tunnelling

calculations. It is more realistic to start from a con® guration in which the heavy

atoms remain frozen during the transfer. Our zeroth-order approximation to the

potential is therefore a one-dimensional double-minimum potential U C (x) with all

atoms except the transferring proton frozen in their equilibrium positions. It is

thus, according to the usual de ® nition, a crude adiabatic rather than an adiabatic

potential.

Of course this zeroth-order one-dimensional potential will be very inaccurate.

It is well-recognized that heavy-atom motion can make major contributions to the

tunnelling rate. This is immediately obvious for the motion that modi® es the distance

between the atoms carrying the hydrogen before or after the transfer. It is also

supported by direct experimental observations, such as the dependence of tunnelling

splittings on the excitation of skeletal vibrations [28, 29] . A more subtle con® rmation

comes from the observation that in some tunnelling reactions the zero-temperature

limit is reached at almost the same temperature for deuterium as for hydrogen [30] ,

which shows that this temperature is determined by non-hydrogenic low-frequency

skeletal modes. To generate an appropriate multidimensional potential, we unfreeze

the transverse modes and treat them as harmonic oscillators. In this picture the

(mass-weighted) reaction coordinate x remains associated with the proton motion

and should not be confused with the minimum-energy path used as the reaction

coordinate s in transition-state theory.

2.1. Symmetric barriers

To de® ne the coordinate x more precisely, we ® rst consider symmetric potentials

and note that some of the transverse modes can undergo displacements if we move

from the transition state, taken to be x = 0, to the equilibrium con® gurations

x = ±D x, namely the modes that are either symmetric or antisymmetric with

respect to the dividing plane through the transition state. Denoting the transverse

coordinates collectively by y, we use subscripts s and a to single out these symmetric

and antisymmetric coordinates. Their displacements between the transition state and

the equilibrium con® guration are denoted by D ys and ±D ya, respectively. Modes

that are asymmetric but not antisymmetric cannot be displaced and are expected to

play a minor role; these modes, to be labelled by a subscript b, will be considered

later in this section.

It will turn out that for our purpose the eŒect of transverse modes on the
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Proton tunnelling in polyatomic molecules 9

tunnelling dynamics is basically additive, each coupled mode making its own con-

tribution [19] . As a ® rst approximation we therefore ignore mixing of the transverse

modes during the tunnelling; we also neglect frequency changes, and restrict our-

selves to linear couplings with the reaction coordinate. These couplings relate the

displacements D ya,s to D x and can be written in the form

Ca,s = x
2
a,s D ya,s/ D x, (1)

where x a,s represent the transverse-mode frequencies. The multidimensional potential

then assumes the form

U (x, y) = U C (x)+ 1
2

a,s

x
2
a,s (y

2
a,s D y

2
a,s ) j x j

s

Cs(ys D ys) x

a

Ca(ya±D ya), (2)

where 1
2 a,s x 2

a,s D y2
a,s represents the relevant contribution to the reorganization

energy. To avoid the singularity at x = 0 of the term proportional to j x j , we use

the replacements j x j ® x2 , Cs ® Cs/ D x, which yields results equivalent to those of

equation (2). For simplicity we omit for the time being terms of the form x 2
b y2

b / 2

corresponding to modes that are not linearly coupled to the transfer mode and thus

do not contribute in this approximation.

In practice, it is more convenient to use an adiabatic formulation, since the

quantum-chemical results are produced in this form. To obtain the adiabatic poten-

tial, we set ¶ U (x, y)/ ¶ ya,s = 0, which yields

Ua (x) = UC (x) 1
2
(1 j x j / D x)

2

a,s

( x a,s D ya,s)
2
, (3)

leading to an adiabatic potential of the form

U (x, y) = Ua (x) + 1
2

a

x
2
a (ya xCa / x

2
a )

2
+ 1

2

s

x
2
s (ys j x j Cs/ x

2
s )

2
. (4)

The transition state is the only con® guration where the reaction coordinate coin-

cides exactly with a (generalized) normal mode, namely the mode with imaginary

frequency. It is also the con® guration of highest symmetry. Therefore we choose it

as the origin of the vibrational coordinates, i.e. we measure all displacements D x

and D ya,s relative to this structure. Thus near the top of the barrier, where x ’ 0

and

U a(x) ’ U 0
1
2
( x

*
x)

2
, (5)

we have

Ux ® 0 (x, y) ’ U0
1
2
( x

*
x)

2
+

1
2

a,s

( x a,sya,s)
2
, (6)

where U 0 is the adiabatic barrier height and x
*

the adiabatic imaginary frequency

in the transition state. From these equations it follows that the reaction coordinate

x near its origin is the normal mode with imaginary frequency and that the coupled

transverse modes ya,s are other normal modes in the transition state. Similarly, we

have near the minimum, where x ’ ±D x,

U a(x) ’ 1
2 X

2
0(x ± D x)

2
, (7)

so that

Ux ® ±D x(x,y) ’ 1
2 X

2
0 (x ± D x)

2
+

1
2

a

x
2
a (ya ± D ya)

2
+

1
2

s

x
2
s (ys D ys)

2
, (8)
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10 W. Siebrand et al.

where X 0 is an eŒective harmonic frequency associated with the reaction coordinate

x in the equilibrium con® guration.

To calculate this frequency we have to consider the mixing of vibrational modes

that will take place between the equilibrium con® guration and the transition state.

The actual normal coordinates of the equilibrium con® guration, to be denoted

collectively by z, will be diŒerent from the set x,y and lead to a potential of the

form

U eq(z) = 1
2

j

x
2
j (zj ± D z j )

2
+ 1

2

k

x
2
k (zk D zk)

2
, (9)

where j and k run over the modes that are, respectively, displaced and not displaced

between the minima, with displacements D z j ,k relative to the transition state. In

addition there will be terms 1
2
x 2

n z2
n corresponding to modes that are not displaced

between the transition state and the equilibrium con® guration. The coordinates z
can be related to the coordinates x, y by a unitary matrix G , which separates into

three blocks, Gaj , G sk and Gbn , the last block referring to modes without linear

coupling. These transformations must be carried out in such a way that the Eckart

conditions [31] are met, so that no mixing with rotations occurs. The G matrix

allows us to calculate the eŒective frequency of the transfer mode in the equilibrium

con® guration:

X
2
0 =

j

G
2
0j x

2
j , (10)

where x = j G0j zj and j G2
0j = 1. Equations (7) and (10) describe the reaction

coordinate x in the equilibrium con® guration.

In general we transform calculated interatomic distances into vibrational dis-

placements through the relation [19]

D (x, y) = r Ĺ, (11)

where r is the vector of the mass-weighted atomic displacements between the

transition state and the equilibrium con® guration and L is the 3N 3 (3N 6)

matrix that relates the normal coordinates of the transition state to the mass-

weighted Cartesian coordinates of the atoms. For values of x intermediate between

0 and ±D x, we obtain the corresponding structure through the relations

¶ U A(x, y)/ ¶ y = 0 (12)

and compute the energy by single-point calculations.

In general mixing of the transverse modes among themselves is expected to have

a minimal eŒect on zero-point splittings and on the temperature dependence of

tunnelling rate constants, because these eŒects represent the positive and negative

contributions of many modes, which should roughly average out because of the

unitarity of G . However, this mixing may become important for mode-speci® c rate

constants and splittings. For each excited mode j we must then determine the

contributions G2
aj and G2

sk of the corresponding modes ya and ys to the rate or the

splitting (see below).

The present formulation of the potential-energy surface, given by equation (4),

diŒers from that used in the approach to tunnelling derived from variational

transition-state theory, which uses the reaction-path Hamiltonian. In that Hamil-

tonian the reaction coordinate is the minimum-energy path rather than a normal

coordinate, so that the couplings to the transverse modes enter via the kinetic-energy
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Proton tunnelling in polyatomic molecules 11

operator. In our formulation the kinetic-energy operator remains diagonal and the

couplings enter via the potential. The problem with the reaction-path Hamilto-

nian applied to proton transfer is that the required eŒective integration over the

transverse-mode coordinates is very di� cult unless these modes are treated in the

adiabatic approximation. Although the corresponding vibrational averaging is gen-

erally appropriate for modes with frequencies higher than the tunnelling frequency,

the coupled modes for proton transfer are typically low-frequency modes. In prac-

tice, one therefore tends to replace the resulting tunnelling trajectory by the ad

hoc assumption of a straight-line path [6] , an approach that is computationally

very ine� cient and tends to be inadequate for dealing with isotope eŒects. In our

formulation of the potential-energy surface, the couplings enter as potential-energy

terms that are linear in the transverse-mode coordinates. It will turn out [18] to

be possible to integrate analytically over these coordinates without invoking the

adiabatic approximation.

2.2. Asymmetric barriers

So far we have only considered symmetric transition states. In our approach

the eŒect of the couplings to the reaction coordinate depends on the symmetry

of the transverse modes, which is lost for asymmetric barriers. However, we can

still recognize modes that can be classi® ed as basically symmetric and basically

antisymmetric with respect to the dividing surface of the transition state. To make use

of this, we separate each mode into its s̀ymmetric’ and àntisymmetric’ components

by associating the symmetric component with the sum of the displacements from

the transition state to the initial and ® nal states, and the antisymmetric components

with their diŒerence:

D y
s,a
m =

1
2
(y

f
m ± y

i
m), (13)

where the superscripts ì’ and f̀ ’ denote the initial and ® nal equilibrium con® gura-

tions, respectively. This approach relates the mixing of symmetric (+ ) and antisym-

metric ( ) components to the barrier asymmetry and reduces to the earlier expres-

sions if the barrier is symmetric. Combined with the de® nition D x = (xf x i)/ 2, this

allows us the retain the form of the potential U (x, y) given by equation (4) provided

we replace the coordinates ya,s by their components y a,s
m .

Since the two wells have diŒerent energies in the case of an asymmetric barrier,

there are two diŒerent rate constants, depending on which well corresponds to

the initial state. According to the principle of microscopic reversibility, these rate

constants diŒer by a Boltzmann factor exp ( D E / kB T ), where D E is the energy

diŒerence between the initial and the ® nal well.

2.3. The barrier along the reaction coordinate

To evaluate the one-dimensional adiabatic tunnelling potential UA(x), we use

quantum-chemical methods for the stationary points and as many additional points

as required to obtain the desired accuracy. For symmetric potentials, the stationary

points produce four parameters relevant to the generation of the barrier, namely the

displacement D x, the barrier height, and the curvatures at the top and the bottom

of the barrier, from which a potential can be generated by interpolation. In simple

cases it may be su� cient to use an analytical interpolation scheme. For instance, to

calculate tunnelling splittings, one may only need an accurate representation of the

barrier shape in the bottom region. In that case a two-parameter quartic expression
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12 W. Siebrand et al.

of the form

UA(x) E U q = U0 [1 (x/ D x)
2
]
2
, (14)

where U0 and D x are the calculated barrier height and reaction-coordinate displace-

ment, respectively, may be satisfactory. To add a third parameter, one can modify

the curvature at the bottom of the potential by a shape function, e.g.

U A(x) E Uq (1 + A exp [ B (x
2 D x

2
)
2
] ). (15)

If all four calculated parameters are to be used, these analytical potentials are not

practical; in that case a direct interpolation scheme is to be preferred.

These analytical potentials can be adapted to asymmetric barriers by addition of

a cubic term. In that case there will be two additional parameters produced by the

stationary point calculations, namely the energy and the curvature of the ® nal state.

In principle it is possible to use the method of equation (12) to calculate parameters

for intermediate points, but this procedure requires further testing.

3. Instanton m ethod

Proton tunnelling rates depend exponentially on the tunnelling distance. Since

potential-energy barriers tend to get narrower near the top, tunnelling rates also

depend exponentially on the energy of the tunnelling proton. These exponential

dependences tend to put strong restrictions on the eŒective tunnelling trajectories.

The instanton approach is based on the recognition that these restrictions give rise

to a dominant tunnelling trajectory, the instanton path [16 ± 18, 32 ± 35] . That such a

preferred trajectory exists can be inferred from the competitive nature of the distance

and energy dependences: paths near the bottom of the barrier require little energy

but imply long tunnelling distances, whereas paths near the top correspond to short

tunnelling distances but require more energy. The (temperature-dependent) instanton

trajectory is the most favourable compromise between these con¯ icting requirements

and dominates the transfer below the top of the barrier. In this section we restrict

ourselves to a qualitative introduction to the instanton formalism; mathematical

details can be found in the Appendix.

3.1. One-dimensional potentials

To illustrate the nature of the instanton path, we start with a one-dimensional

potential U (x), for which the instanton reduces to a familiar form in terms of the

classical action (here and hereafter we use units " = 1)

SC (E ) =

x2

x1

dx f 2[U (x) E ] g 1/ 2
, (16)

where x1 and x2 are the classical turning points for energy E . The corresponding

transfer rate constant is given by the well-known expression [35, 36]

k(T ) = Z
1

0

1

0

dE exp [ 2SC (E )] exp ( b E ), (17)

where b = 1/ kB T and Z0 = n exp ( En b ) is the partition function for the initial

state. For temperatures where tunnelling dominates, we can use the method of

steepest descent to ® nd the trajectory that dominates the integral, so that we can

carry out the integration. This instanton path is characterized by a value s = b

for the period of the classical motion in the upside-down potential U (x) [16] .
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Proton tunnelling in polyatomic molecules 13

The instanton action along this path, S0
I (T ), equals twice the classical action. The

integration reduces equation (17) to

k(T ) = A
0
(T ) exp [ S

0
I (T )] , (18)

where A0 (T ) represents a distribution of channels centred about the instanton path

as required to make the transition irreversible.

3.2. Multidimensional potentials

The simple form of equation (18) is due to the existence of a dominant path. To

show that the same form applies to multidimensional tunnelling, we have to demon-

strate that in that case there is a preferred path as well. As shown in the Appendix,

this demonstration makes use of path integrals [37] describing closed trajectories

in imaginary time in the upside-down potential U (x, y). Among these trajectories,

there are periodic orbits for which the Euclidian action SE (i.e. the action in the

upside-down potential) has an extreme value, to be obtained by solving the equations

¶ SE / ¶ x = 0 and ¶ SE / ¶ y = 0. This yields the stationary solutions corresponding to

the equilibrium con® gurations, a saddle point corresponding to the transition state,

which contributes a term ~ exp ( b U0 ), and a second saddle point corresponding

to the instanton trajectory, which contributes a term ~ exp [ SI( b )] . The latter

term justi® es the generalization of equation (18) to tunnelling rate constants in

multidimensional potentials:

k(T ) = A(T ) exp [ SI(T )] , (19)

where SI is the Euclidian action of the instanton path. From its de® nition as

a periodic orbit in the upside-down potential it follows that the shortest possible

instanton path, corresponding to the temperature where tunnelling occurs just below

the top of the barrier, will be the zero-point amplitude of this potential. This

de® nes the cross-over temperature T
*

= x
*
/ 2 p kB above which the transfer occurs

classically, since the transfer rate constant (17) will then be governed by the saddle

point corresponding to the transition state.

This leaves us with the problem of determining the instanton path. The cor-

responding extreme-value equations lead to as many coupled equations of motion

as there are vibrational degrees of freedom; in practice this means that it is very

di� cult to ® nd exact solutions for more than two dimensions [17, 18] . To deal with

large systems, approximations will be unavoidable. To ® nd suitable approximations,

we ® rst consider a simple two-dimensional model studied by Benderskii et al. [38] .

It consists of two crossing harmonic potentials, U (x) in our notation, coupled to a

totally symmetric harmonic vibration ys. This problem can be solved exactly and al-

lows straightforward generalization to several coupled totally symmetric vibrations.

The resulting expression for the multidimensional instanton action as a function of

temperature we rewrite so as to separate terms referring to the one-dimensional po-

tential U (x), which determine the one-dimensional instanton action S0
I , from terms

referring to the couplings, which provide a multidimensional correction. This correc-

tion turns out to be independent of the shape of U (x). We then make the reasonable

assumption that this result is valid not only for the model of two crossing harmonic

potentials but for any well-behaved double-minimum potential U (x). Antisymmetric

vibrations are included through Franck± Condon factors; they simply add a term to
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14 W. Siebrand et al.

the instanton action. The ® nal result for the action is of the form [25, 26] .

SI(T ) =
S0

I (T )

1 + s d s(T )
+ a s

a

d a(T ), (20)

where the a and d terms are functions of the couplings Ca and Cs displayed in

equations (1)± (4) (see below). For the calculation of tunnelling splittings we use the

same equation in the limit T = 0.

A major advantage of this scheme is that explicit evaluation of the instanton

trajectory is avoided. The only parameters needed for the tunnelling calculations are

those governing the one-dimensional potential U a(x) and the couplings, and these

can be evaluated readily by standard quantum-chemical methods. The method is

not limited to rate constants but can also be used to calculate tunnelling splittings

of ground and excited vibrational levels, as we shall show presently. Of course,

the method is approximate and its accuracy needs to be tested by comparison

with experiment. As we shall demonstrate, the tests carried out so far indicate that

for large systems the method is superior in accuracy and speed to other available

methods.

3.3. Linear couplings

To carry out the calculations, we need expressions for the parameters d and a ,

associated with the coupling. For the derivation of these parameters we refer to the

original literature [25, 26, 38]; here we simple quote the results. The correction terms

for symmetric coupling in the general case of an asymmetric barrier take the form

d s(T ) = d s(0) coth
x j

2kBT
, (21)

where d s (0) is the zero-level correction term; for modes x m ¿ X 0 , which generally

dominate the coupling, it is given by [19, 23]

d s(0) =
1
4
( X 0/ x m)(C

s
m D x/ X 0

2
)
2
, (22)

X 0 being the eŒective frequency of the transfer mode in the initial state. The

corresponding terms d a(T ) for antisymmetric coupling depend on the asymmetry of

the potential. For small asymmetry we have [26]

d a(T ) = 2( D y
a
m)

2
/ a

2
0m coth

x m

4kBT
, (23)

and for large asymmetry, where the ® nal state acts as an absorbing wall [17, 18] , we

have instead

d a (T ) = ( D y
a
m)

2
/ a

2
0m coth

x m

2kB T
, (24)

a0m = x
1/ 2

m being the zero-level amplitude of the mode ym. At high temperatures

both expressions turn into the usual activation term d a (T ) = U a/ kB T , where U a =

x 2
m( D y a

m)2/ 2 represents the barrier height corresponding to the ® nal reorganization

of this mode. For symmetric barriers D ya
m reduces to D ya.

The factor a s, which enters because the eŒect of antisymmetric coupling is

modulated by symmetric couplings, assumes the form [38]

a s = (1 q/ 2
1/ 2

+ q
2
/ 4)

2
, (25)
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Proton tunnelling in polyatomic molecules 15

where

q = R/ (1 B ),

R =

m

( D y
s
m)

2
x

3
m/ 2

1/ 2
U0 X 0 ,

B =

m

( D y
s
m)

2
x

2
m/ 2U0 , (26)

the sum running over the modes with frequencies x m ¿ X 0 .

In the case of hydrogen transfer, one is unlikely to encounter strongly coupled

modes x m & X 0. If they do occur, they couple adiabatically and their eŒect can

be included by the introduction of an eŒective mass of the tunnelling particle in

equation (16):

SC (E ) =

x2

x1

dx f 2meŒ[U (x) E ] g 1/ 2
, (27)

where [38]

meŒ = 1 +

a

(Ca / x
2
a )

2
+ 4x

2

s

(Cs / x
2
s )

2
. (28)

3.4. The zero-temperature limit

At T = 0 the rate constant has a non-zero limit [39]

k(0) = ( X 0/ 2 p ) exp [ SI (0)] , (29)

where the instanton action at zero-temperature is represented by

SI (0) =
2SC ( X 0/ 2)

1 + s d s(0)
+ a s

a

d a (0), (30)

SC ( X 0/ 2) being the classical action for the zero-point energy level in the initial state.

This is the form used to calculate zero-point tunnelling splittings for symmetric

potentials:

D (0) = ( X 0/ p ) exp [ SI(0)/ 2] . (31)

The pre-exponential factor in this equation rests on a simplifying assumption made

to calculate the factor A(T ) in equation (19). The assumption, which we also use

for the calculation of rate constants, is that the strongly coupled modes are close

to the adiabatic limit. Then A(T ) can be replaced by X 0 / 2 p , provided the one-

dimensional instanton action S0
I is evaluated for the vibrationally adiabatic barrier,

i.e. the adiabatic barrier with the zero-point energy included [18, 38] . In that case

equation (19) assumes the simple form

k(T ) = ( X 0/ 2 p ) exp [ SI (T )], (32)

where SI(T ) is given by equation (20) with S0
I (T ) calculated for the vibrationally

adiabatic potential. Note that such an adiabatic approximation would not be valid

for SI itself, since it enters via an exponent.

3.5. Mode-speci® c tunnelling splittings

In the instanton method, as opposed to transition-state theory, it is straightfor-

ward to calculate the tunnelling splittings of vibrationally excited levels [20, 22, 24, 25].

The correction terms associated with these levels with a quantum number v in the
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16 W. Siebrand et al.

transition state take the simple form

d s(vs) = (2vs + 1) d s(0), d a (va ) = 2 d a(0)/ (2va + 1). (33)

To calculate the (observable) splitting of a level vj ,k in the equilibrium con® guration,

we must use the G matrix:

va,s =

j ,k

G
2
a,s; j ,kvj ,k . (34)

It follows from equation (33) that in general excitation of symmetric vibrations

will increase the tunnelling splitting, whereas the eŒect of exciting an antisymmetric

vibration depends on the magnitude of the displacement relative to a0 , the zero-level

amplitude. If D ya/ a0 & 1, the Franck± Condon contribution of the va th level equals

exp [ a s d a (va)] and if D ya/ a0 < 1 it takes the form

Fa(va) = j Lv [ a s d a (0)] j exp [ a s d a(0)], (35)

where Lv is the vth Laguerre polynomial. According to equation (31), the tunnelling

splitting is proportional to the square root of this Franck± Condon factor. For a level

in the equilibrium con® guration excited by a single quantum of mode j , associated

with antisymmetric modes a in the transition state, equation (35) can be usually

approximated by

Fa (1 j ) = [1 a s d a(0)G
2
aj ] exp [ a s d a (0)], (36)

where we have neglected the oŒ-diagonal elements. It is important, however, to

include mixing with the reaction coordinate, since this increases the energy at which

the tunnelling occurs by an amount j G2
0j vj , so that the energy E in equation (16)

is now given by

E = (v0 +

j

G
2
0j vj + 1

2
) X 0 , (37)

where v0 is the quantum number of the tunnelling mode in the equilibrium con® gu-

ration.

Finally we point out that the approach described here is not limited to tunnelling

splittings but can also be used to evaluate mode-speci® c tunnelling rate constants.

3.6. Nonlinear couplings

So far we have limited ourselves to couplings that are linear in the transverse-

mode coordinates, the assumption being that for displaced modes the lowest-order

coupling terms are likely to be dominant. It has been observed, however, that

modes that are not displaced and thus do not contribute to the linear coupling can

still eŒect the tunnelling [20, 22, 24, 28] . For instance in tropolone, which remains

planar during intramolecular proton transfer, excitation of low-frequency out-of-

plane modes aŒects the tunnelling splitting. These nonlinear couplings correspond

to anharmonic terms in the potential and can be positive or negative. In general the

quantum-chemical methods presently available cannot reliably evaluate such terms

for polyatomic molecules.

The experiments discussed in the next section suggest that nonlinear couplings

are most important for low-frequency modes with large amplitudes. The eŒect

of anharmonic coupling with high-frequency modes will be di� cult to observe

unambiguously because there is expected to be strong cancellation between positive

and negative contributions. However, if the linear coupling with a particular mode
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Proton tunnelling in polyatomic molecules 17

is very strong, one may reasonably expect nonlinear coupling to be signi® cant for

that mode. This strong-coupling case remains to be investigated.

Here we limit ourselves to low-frequency out-of-plane vibrations in planar

molecules for which the lowest-order anharmonic coupling terms are of the form

x2
b Dby2

b . Whether such terms will help or hinder tunnelling depends on their

sign, as can be readily veri® ed for quartic potentials of the form (14), where they

contribute to the quadratic terms. The eŒect of this coupling with a given mode b on

the barrier height and tunnelling distance can be represented by the replacements

U0 ® U0 [1 (Db / 2U 0) D x
2
y

2
b ]

2

D x ® D x[1 (Db / 2U 0) D x
2
y

2
b ]

1/ 2
. (38)

Thus for Db < 0, both the barrier height and the tunnelling distance increase with

increasing j yb j , so that tunnelling will be hindered, the more so, the higher mode b

is excited. For Db > 0, the opposite holds, i.e. tunnelling will be helped.

Since it is not possible to integrate over nonlinearly coupled coordinates in

the manner used for linearly coupled coordinates ya,s, we cannot treat anharmonic

coupling on the same level as linear coupling. However, since the anharmonically

coupled modes of interest are low-frequency modes, we can treat them adiabatically.

Thus we can add the anharmonic coupling terms Dbx2y2
b directly to the vibrationally-

adiabatic potential. Using the G matrix, we transform to coordinates yn of the

equilibrium con® guration, which we treat as parameters. We ® rst calculate yn -

dependent splittings or rate constants and then average the result over the probability

that the coordinate of mode n will have a value yn. For instance for the vth level of

the mode we ® nd the tunnelling splitting from

D n (v) = D n(yn ) j c v(yn) j 2 dyn , (39)

where c v(yn) is the appropriate harmonic-oscillator wavefunction. For rate constants,

averaging over yn requires summation over the populations of the levels of mode n,

which for harmonic oscillators yields the probability

P (yn ) =
exp f y2

n / [a2
0n coth ( x n/ 2kB T )] g

exp f y 2
n / [a2

0n coth ( x n / 2kBT ] g dyn

, (40)

where a0n is the zero-point amplitude of mode n. The rate constant then assumes

the form

k(T ) = .. k(y ..n..)

n

P (y ..n..) dy ..n... (41)

4. Com parison with experim ent

Since the theory outlined in the preceding sections contains many approxima-

tions, the limits of its applicability and its accuracy within these limits need to

be established by comparison with experiment. The comparisons to be discussed

concern both tunnelling splittings and rate constants. To test the applicability of

the dynamics, we need to consider properties that do not rely critically on the ac-

curacy of the quantum-chemical input data. Thus zero-point level splittings or rate

constants measured at a single temperature are unsuitable given their sensitivity to

calculated barrier heights. Of more interest are kinetic isotope eŒects, especially if

they are observed for all three hydrogen isotopes. The most useful data are those
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18 W. Siebrand et al.

that combine isotope eŒects with temperature dependences for rate constants and

with mode-speci® c splittings for spectra.

The calculations are performed with our D(ynamics) O(f) I(nstanton)

T(unnelling) program, which was recently made available via the internet [27].

This is direct-dynamics code, to be used in conjunction with a suitable quantum-

chemistry code. The calculations reported here used the GAUSSIAN92 or 94 suites

of programs [40] to calculate optimized geometries, vibrational force ® elds and

tunnelling barriers. Note that the one-dimensional barrier used in the calculation of

the instanton action is the vibrationally adiabatic barrier. The main decision to be

made about the quantum-chemical part of the calculation is, apart from the choice

of the level of theory and the basis set, the approach to be adopted to establish

the shape of the barrier. Since it is notoriously di� cult to calculate accurate barrier

heights for large systems in general and for hydrogen-bonded systems in particular,

the most eŒective strategy is often to restrict the calculations to the stationary

points along the minimum-energy path, transform to the reaction coordinate x by

the method outlined in section 2 and use an interpolation scheme to connect the

resulting points, taking into account that in most cases the barrier height will require

empirical adjustment. The latter problem is not speci® c to our instanton approach

but aŒects all dynamics calculations. While it seriously interferes with our ability

to deal with single data points, it is much less serious when extensive sets of data

are available, so that one can compare ratios of splittings and rate constants rather

than rely on their absolute values.

4.1. Tunnelling splittings

First we consider tunnelling splittings. Accurate mode-speci® c splittings are

available for two large molecules, tropolone [41] and 9-hydroxyphenalenone (9HPO)

[29, 42] , illustrated in ® gure 1. In both molecules the proton exchange is between a

keto and an enol group; in tropolone the keto and enol carbons are adjacent and

form part of a planar ole ® nic ring, while in 9HPO they are separated by a third

carbon atom and are part of a condensed aromatic ring system. The active site in

9HPO is the same as that in malonaldehyde [21, 43 ± 49] , also depicted in ® gure 1,

but for this simpler molecule, to which we return in the next section, no mode-

speci® c data are available. This is regrettable since the structure of malonaldehyde is

known accurately [50, 51] and can serve as a test for the quantum-chemical structure

calculations to be used for the dynamics. Applied to the calculations reported thus far

[21, 46] , this test indicates that it is very di� cult to obtain an accurate representation

of the hydrogen-bonded structure by standard Hartree± Fock and density-functional

methods. By the same token one expects the calculated energetics of the transfer to

be subject to considerable uncertainty, so that the absolute values of the splittings

cannot be used to probe the dynamics methodology. Instead we shall focus on

observations such as the isotope eŒect and the eŒect of exciting speci® c transverse

modes.

4.1.1. 9-Hydroxyphenalenone

In 9HPO the transfer takes place in a six-membered ring structure. Mode-speci® c

splittings in the ground state of the mono-deuterio isotopomer (9DPO) have been

measured in a cold beam [29, 42]. For 9HPO itself only the zero-point splitting has

been observed since this splitting proved too large for thermal population of the

upper level, thus inhibiting the observation of mode-speci® c splittings. The structure
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Proton tunnelling in polyatomic molecules 19

Figure 1. (a) Malonaldehyde, (b) tropolone and (c) 9-hydroxyphenalenone.

and force ® eld were calculated at the HF/ 6-31G** level, and the quartic poten-

tial (14) was used to interpolate between the stationary con® gurations [25] . Two

transition-state modes are strongly displaced: a symmetric mode of 745 cm 1, corre-

lated with mode 1 (288 cm 1) and mode 8 (629 cm 1 ), and an antisymmetric mode

of 504 cm 1, correlated with mode 5 (429 cm 1 ) in the equilibrium con® guration.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
6
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



20 W. Siebrand et al.

Figure 2. Three transverse modes of 9-hydroxyphenalenone that are strongly coupled to the
transfer mode: (a) x 0

1 = 288 cm 1 , (b) x 0
5 = 429 cm 1 , and (c) x 0

8 = 629 cm 1 .

The calculations produced low values for the zero-point splitting. This is ascribed

to inaccurate quantum-chemical input data, based in part on our previous experience

that the Hartree± Fock method tends to produce barriers that are too high and in

part on the fact that the VTST/ ST large-curvature approximation based on the same

input data yields roughly the same low zero-point splitting. While it is possible that

both the tunnelling distance and the barrier height are predicted inaccurately, we

have restricted ourselves to scaling the calculated barrier height by a factor 0.87 to

2658 cm 1 or 7.6 kcal mol 1. This yields correct zero-point splittings for both 9HPO

and 9DPO, and hence the correct isotope eŒect (for the same barrier the VTST/ ST

method also yields the correct zero-point splitting for 9HPO, but underestimates

the splitting for 9DPO [25]). Therefore the scaled barrier was used to calculate the

mode-speci® c splittings.

Splittings have been reported for ® ve excited levels corresponding to three modes,
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Proton tunnelling in polyatomic molecules 21

Figure 3. Comparison of calculated and observed mode-speci® c splittings in tropolone
(circles), tropolone-d1 (squares), and 9-hydroxyphenalenone-d1 (diamonds).

two symmetric ( x 1 and x 8 ) and one antisymmetric ( x 5); they are the modes with

the strongest calculated displacements depicted in ® gure 2. As predicted by theory,

the symmetric modes along with their overtones and combinations enhance the

splitting, whereas the antisymmetric mode reduces it [25] . The correlation between

the calculated and observed splittings is depicted graphically in ® gure 3. Although

the agreement is not perfect, it convincingly demonstrates the eŒect of coupling to

transverse modes on the splitting.

4.1.2. Tropolone

Similar calculations have been carried out for tropolone, where the transfer

occurs in a ® ve-membered ring, which is more strained than the six-membered ring

of 9HPO and leads to a much smaller splitting. In the ground state, the splitting

has only been measured for the zero-point level and, with some uncertainty, for the

OH-stretch mode [52], but mode-speci® c splittings have been observed [41] in the

lowest singlet-excited state for both tropolone-d0 and tropolone-d1. As for 9HPO,

some of these splittings were found to be smaller and others were found to be larger

than the zero-point splitting.

The excited-state calculations were carried out at the CIS/ 6-31G** level and

again the quartic potential (14) was used to interpolate between the stationary

points [22] . In parallel calculations on the electronic ground state it was found that

the barrier height is very sensitive to the method of calculation, with B3LYP/ 6-

31G** and M P2/ 6-31G** showing a much lower barrier than HF/ 6-31G** and

certainly too low to explain the observed small zero-point splitting of 1 cm 1. We
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22 W. Siebrand et al.

therefore used the HF and CIS approaches for the ground state and the excited

state, respectively, scaled so as to reproduce the observed zero-point splittings of

0.99 and 18.9 cm 1 . The corresponding scaling factors of 0.9 and 0.68, respectively,

yield barrier heights of 4930 and 2840 cm 1. The latter barrier also reproduced the

observed splitting of 2 cm 1 in the mono-deuterio isotopomer.

The only mode for which the tunnelling splitting in the ground state has been

reported is the OH-stretch vibration which is the main component of the transfer

mode, and hence strongly dependent on the form of Ua (x). For simplicity, we

have used the quartic potential, but applied a correction deduced from the analogy

with malonaldehyde. Speci® cally, we have introduced anharmonicity constants of

300/ 220 cm 1 for tropolone-H/ D to correct the zero-point energy. The calculated

splittings of 15/ 0.8 cm 1 are to be compared with the reported value of 12 cm 1 for

the H isotopomer.

In the excited state, three transition-state modes were found to be strongly

displaced, namely two symmetric modes of 2002 (1456 in d1) and 734 cm 1 , and

one antisymmetric mode of 549 cm 1 . Since the observed spectrum does not ex-

tend much beyond 700 cm 1 , the ® rst of these modes does not give rise to an

observable transition. The 734 cm 1 fundamental is a major component of mode 13

(observed/ calculated 415/ 422 cm 1 ) and mode 14 (298/ 355 cm 1 ), both of which

show enhanced splitting relative to the zero-point level. The 549 fundamental is

the major component of mode 11 (511/ 519 cm 1 ), which shows a reduced splitting.

The remaining observed in-plane fundamentals show splittings similar to the zero-

point splitting. All these observations agree with the predictions [22] . A comparison

between calculated and observed splittings is shown graphically in ® gure 3.

However, the tropolone ¯ uorescence excitation spectrum also shows out-of-plane

fundamentals and progressions with splittings diŒering from the zero-point splitting.

Since tropolone is planar and is calculated to remain planar in the transition state,

these modes are not displaced and do not contribute to the linear coupling with the

reaction coordinate. Their lowest-order contribution is quadratic in both the reaction

coordinate and the out-of-plane mode coordinate and thus represents anharmonic

coupling. Since the quantum-chemical programs available cannot reliably calculate

anharmonicities for this molecule, we cannot extend the present ab initio calculation

of tunnelling splittings to undisplaced modes. It is possible to account for the

observed splitting by assuming an empirical anharmonic coupling, which makes

sense in the case of a progression where one coupling parameter can account for

a series of diŒerent splittings, but this is outside the scope of the present section,

which is limited to predictions based on calculated parameters. We return to this

problem in the next section.

4.1.3. Summary of splittings

The results obtained so far can be summarized as follows. The theory has

been applied to two planar molecules of considerable complexity. It has proved

eŒective in accounting for the splitting of in-plane fundamentals relative to the

zero-point splitting. These relative splittings are calculated by ab initio methods

from the displacements of the normal modes between the transition state and the

equilibrium con® guration and thus re¯ ect the accuracy with which these structures

are predicted by the available quantum-chemical codes. As expected, structures

are easier to calculate than energies; hence the relative splittings are predicted

more accurately than the absolute value of the zero-point splitting. The theory
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Proton tunnelling in polyatomic molecules 23

also accounts for overtone and combination band splittings, provided anharmonic

terms are small. Similarly, kinetic isotope eŒects are generally predicted with good

accuracy, which again is an indication that the method accounts well for the

transverse-mode contributions to the tunnelling. There is evidence that anharmonic

couplings associated with large amplitude motions are important in some cases.

They are not included in the present form of the dynamics, partly because they

complicate the calculations and partly because the required anharmonicities are not

available either quantum-chemically or spectroscopically. In the preceding section

we have shown that it is possible to include such anharmonic couplings in the

dynamics, but in the absence of calculated or observed anharmonicity parameters

these couplings enter as adjustable parameters and are thus outside the scope of the

present comparison of theory and experiment.

4.2. Rate constants

We now consider applications to tunnelling rate constants. To deal properly with

their temperature dependence, we need an accurate representation of the shape of

the potential, since upon approaching the cross-over temperature T
*

= x
*
/ 2 p kB ,

where x
*

is the imaginary frequency of the transition state, the tunnelling paths

move close to the top of the barrier. Thus whereas for tunnelling splittings it is often

su� cient to represent the potential accurately in the bottom region only, for rate

constants an accurate description near the top is of equal importance. For symmetric

barriers calculations at the stationary points yield the transfer distance, the barrier

height (which may be in need of empirical adjustment), and the curvatures at the

top and the bottom. However, there is no unique way to generate a potential from

these four parameters. To model the potential accurately, the calculation of a few

intermediate points will generally be advisable, especially for asymmetric potentials.

In this subsection we review four molecules, three of which undergo molecular

inversion while the fourth undergoes tautomerization. The inversions diŒer from the

hydrogen transfers considered above in that no bond is broken, but they show all the

characteristics of a tunnelling reaction. In these systems, the tunnelling vibration is,

however, a low-frequency mode, so that its coupling with high-frequency modes can

be treated adiabatically through equation (28). Our earlier treatment of these three

molecules [19] was incorrectly based on the normal coordinates of the equilibrium

con® guration rather than on those of the transition state. Here we report corrected

results.

4.2.1. Oxiranyl and aziridine

First we review an early application of the theory to two simple triangular

species, the aziridine molecule [19, 53 ± 55] and the oxiranyl radical [19, 56], both

illustrated in ® gure 4. The reported rate constants for molecular inversion show

the characteristic kinetic isotope eŒect and temperature dependence of a hydrogen

tunnelling process. They are measured by modelling the change of the magnetic

resonance spectrum with temperature: at low temperatures these spectra re¯ ect the

non-planar equilibrium con® guration and at high temperatures, the average over the

two equilibrium con® gurations which corresponds to the planar transition state. At

intermediate temperatures the gradual transition between the two spectra is used to

evaluate the rate of inversion.

The stationary-state structures and force ® elds are calculated at the HF/ 6-31G**

level and for oxiranyl also at the QCISD/ 6-311+ G** level [19, 57]. The results ob-
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24 W. Siebrand et al.

Figure 4. (a) Oxiranyl, (b) aziridine and (c) dioxolanyl.
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Proton tunnelling in polyatomic molecules 25

Figure 5. Comparison of calculated (solid lines) and observed (points) inversion rate con-
stants of oxiranyl (top), oxiranyl-d1 (centre), and oxiranyl-t1 (bottom). The broken

lines are obtained if the coupling to transverse modes is ignored. The dot-dash line is
the classical over-the-barrier result for the light isotopomer.

tained at both levels are very similar if the HF frequencies are scaled by a factor of

0.9. For oxiranyl and its mono-deuterio and mono-tritio isotopomers, the imaginary

frequencies at the top of the barrier are calculated to be 886i, 695i, and 618i cm 1,

respectively. These values extrapolate to X 0 values of 2080, 1452, and 1191 cm 1,

compared to equilibrium inversion frequencies of 803, 652, and 571 cm 1, respec-

tively. The adiabatic barrier height of 7.12 kcal mol 1 was scaled by a factor of 0.91

to 6.5 kcal mol 1 . This scaling serves to reproduce the temperature-independent rate

constant of oxiranyl observed at low temperatures. The only mode signi® cantly cou-

pled to the inversion is the high-frequency CH(D)-stretching mode of the tunnelling

proton (deuteron), which can be treated adiabatically. The barrier shape was deter-

mined by the calculation of points U a(x) for 0 < j x j < D x, all scaled by the same

factor. Since in this case the potential is basically one-dimensional, the intermediate

points could be calculated by projecting the minimum-energy path directly onto

the reaction coordinate x. Figure 5 shows that the calculated inversion rate con-

stants, including both classical and non-classical contributions, compare favourably

with experiment. The dot-dash line, which represents the classical contribution for

the light isotopomer, shows that tunnelling transfer dominates below 350 K. For

the D and T isotopomers, the corresponding temperatures are 300 K and 225 K,

respectively. The broken lines show the results obtained without coupling to the

high-frequency stretching mode; in the present case the coupling is very weak and

produces only a small correction.

The results for aziridine are somewhat diŒerent in that there is coupling to

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
6
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



26 W. Siebrand et al.

Figure 6. Comparison of calculated (solid lines) and observed (points) inversion rate con-
stants for aziridine (top) and aziridine-d1 (bottom). Open and closed symbols refer to

data of [53] and [54] , respectively. The broken lines represent results if the coupling
is ignored.

low-frequency antisymmetric modes, which has a suppressing eŒect on the inversion.

The kinetic experiments were carried out at much higher temperatures than for

oxiranyl and show a good deal of scatter [53, 54] , as illustrated in ® gure 6. The

calculated results are very close to the classical limits in the range of temperatures

where kinetic data are available.

4.2.2. Dioxolany l

The dioxolanyl radical, illustrated in ® gure 4, also shows inversion by tunnelling

[19, 58] , but in this case the rate of inversion has been measured only for the

mono-deuterio compound, the rate in the undeuterated radical being too fast to be

observed by EPR spectroscopy. Relative to the earlier treatment [19] , the level of

the calculation has been upgraded to DFT/ UB3LYP/ 6-31G* [57] , a method which,

for inversions, was found to be equal or superior to M P2 or QCISD methods with

larger basis sets. It is found that the inversion mode of 720 cm 1 in the transition

state couples strongly with two symmetric transverse modes, a high-frequency mode

of 2496 cm 1, which is included via mass renormalization through equation (28),

and a low-frequency mode of 247 cm 1 , which corrects the instanton action through

equations (20) and (22). The barrier height was calculated to be 2064 cm 1 and

the barrier shape was approximated by the quartic potential (14). After scaling the

barrier by a factor 0.99, we obtained the calculated rate constants shown in ® gure 7,

where they are compared with experiment. We also list results for the undeuterated
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Proton tunnelling in polyatomic molecules 27

Figure 7. Comparison of calculated (solid lines) and observed (points) rate constants for

dioxolanyl (top) and dioxolanyl-d1 (bottom). The dotted lines are obtained if coupling
to transverse modes is ignored. The dot-dash lines represent classical results.

compound to show that these are indeed predicted to be outside the range accessible

by magnetic resonance spectroscopy.

4.2.3. Porphyrins

To conclude our comparison with experiment we consider double-hydrogen

transfer in porphine, depicted in ® gure 8. This is a much studied molecule for which

excellent kinetic data are available, covering a wide range of temperatures [59± 61].

Two-proton transfer can occur by two mechanisms: coherently, when the protons

move in phase, and incoherently, through a cis-type intermediate, as illustrated in

® gure 8. It has been recognized for some time [14, 59, 62 ± 65] that the latter process

dominates for all temperatures for which data are available. This means that the

transfer rate is controlled by transfer of a single proton across an asymmetric barrier

between the stable trans and the metastable cis compound. Direct evidence for this

conclusion can be derived from low-temperature rate constants [59] , which show the

same temperature dependence for hydrogen as for deuterium transfer, from which

the cis± trans energy diŒerence can be directly estimated, since it indicates that the

low-temperature limit has been reached where tunnelling transfer occurs exclusively

at the zero-point level of the cis isomer and hence is independent of temperature.

A simpler version of the same problem is obtained if one of the protons is

removed to create the porphine anion. Also kinetic data are available for this anion

[66] , but in a more restricted range of temperatures than for porphine itself. In the
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28 W. Siebrand et al.

Figure 8. The two reaction pathways for tautomerization of porphine.

anion the barrier is symmetric so that at low temperatures the rate constant should

go to a non-zero limit. Whereas in porphine tunnelling can occur only at energies

above the energy of the cis isomer, in the anion there are no energy restrictions, and

hence the transfer will be faster, especially at lower temperatures. An analysis of the

anion data by our method is in preparation and will be published elsewhere.

It has been found that density-functional theory at the B3LYP/ 6-31G* level gives

an accurate account of the structure and force ® eld of porphine in its equilibrium

con® guration [67, 68]. Therefore this is the method we have used to evaluate the

transfer potential. It should be realized, however, that this method need not be

equally successful for the transition state in which there are hydrogen bonds, whose

strength is likely to be overestimated by density-functional theory, leading to low

barriers and possibly short tunnelling distances. Unfortunately, calculations at the

alternative Hartree± Fock level produce unacceptable structures. Therefore we have

limited such calculations to the DFT-optimized stationary structures.

From the low-temperature kinetic data [59] the cis± trans energy diŒerence is

estimated to be 2200±300 cm 1 ; the values obtained by the DFT and HF methods

are 2900 and 3900 cm 1 , respectively, which indicates that neither method yields

accurate energies. This holds true a fortiori for the adiabatic barrier height for

which the two methods give 5850 and 8600 cm 1 , respectively [26] .

The problem of the shape of the barrier has been approached in several ways. The

simple analytical potentials discussed in section 2.3 were found to be unsatisfactory.

A simpli ® ed way to calculate intermediate points has been discussed before [26] ;
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Proton tunnelling in polyatomic molecules 29

Figure 9. Comparison of calculated (solid lines) and observed (points) tautomerization rate
constants of four isotopomers of porphine.

starting from points along the minimum-energy path, it assumes that distances along

this path are proportional to distances along the reaction coordinate x. This works

reasonably well for porphine, as shown before [26] . As an alternative, we report here

results based on a potential that re¯ ects all six stationary-point parameters with the

respective points and curvatures connected by smooth interpolation, the connecting

lines being drawn as tangents to the calculated curves.

The calculated rate constants for the tautomerization reaction in porphine ob-

tained with this potential are compared with experiment in ® gure 9. The overall

agreement is seen to be satisfactory considering the wide range of temperatures and

isotopic masses, resulting in rate constants spanning 10 orders of magnitude. The

observed transfer rates are all in the tunnelling region. The temperature where the

classical and non-classical contributions to the rate in porphine are equal varies

from about 450 K for the TT isotopomer to more than 700 K for the HH com-

pound, showing that tunnelling is the transfer mechanism for all temperatures of

practical interest. The calculations underestimate the isotope eŒect, which is par-

ticularly evident in the case of the TT isotopomer. It is possible to correct this by

changing the shape of the barrier [26] , speci® cally by slimming down the upper

part, but for the moment we are not aware of a theoretical justi® cation for such a

procedure.

4.2.4. Summary of rate constants

Summarizing the results of this subsection, we conclude that the present pro-

cedure is as successful for rate constants as it was shown to be for splittings. In
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30 W. Siebrand et al.

particular, the method proved to be capable of dealing with transfer through an

asymmetric barrier in a molecule as large as porphine. In addition to handling actual

proton transfer, the theory also applies to low-frequency tunnellings such as molec-

ular inversions and covers the entire range of temperatures from low-temperature

tunnelling to high-temperature classical transfer. The present level of dynamics seems

su� cient for practical purposes, since uncertainties in the quantum-chemically com-

puted parameters tend to be much larger than the uncertainties introduced by the

present instanton approach. The main problem is the uncertainty of the calculated

barrier height; this of course aŒects all dynamics methods.

The method is not limited to temperature-averaged rate constants but can also

be applied to rate constants for a speci® c vibronic level. The procedure is similar to

that described in the preceding sections for mode-speci® c splittings.

5. Other applications

Applications to molecules for which no experimental rate constants or splittings

are available amount to predictions. In view of the uncertainties in the available

potentials, the predicted absolute values will rarely turn out to be accurate. However,

such predictions may shed light on relative rates and splittings as well as on transfer

mechanisms.

5.1. Malonaldehyde

Proton transfer in malonaldehyde, depicted in ® gure 1, has served as a prototype

for transfer in hydrogen-bonded systems [43 ± 51] . There have been several attempts

to calculate the zero-point splitting in the ground state [9, 21, 44 ± 49, 69] but the

uncertainty in the calculated barrier heights prevents usage of these results as a test

for the dynamics used in these calculations. Although no mode-speci® c tunnelling

splittings have been measured for malonaldehyde, we have calculated these splittings

in response to calculated splittings in the literature [9] , which did not show the

expected dependence of the splitting on the symmetry of the excited modes. Our

own, so far unreported, calculations show the expected behaviour, which suggests

that the older estimates are incorrect.

These calculations for mode-speci® c splittings in the ground state follow the same

routine as reported for 9HPO and produce similar results. At the HF/ 6-31G** level,

an adiabatic barrier height of 10.3 kcal mol 1 (3590 cm 1 ) was obtained. At this level

the calculated structure in the hydrogen-bonded region deviates appreciably from the

structure deduced from microwave spectroscopy. The observed zero-point splittings

of 21.6/ 3.0 cm 1 for H/ D transfer are reproduced if the barrier is scaled by a factor

0.95. In that case our calculation predicts enhanced splittings for symmetric CCC-

deformation modes, namely 99 and 42 cm 1 for modes with calculated (observed)

frequencies of 248 (252) and 866 (873) cm 1 , and a reduced splitting of 17 cm 1 for

the antisymmetric CCO-deformation mode at 480 (511) cm 1 .

To obtain more reliable predictions, it will be necessary to upgrade the quantum-

chemical calculations to the point where they are capable of reproducing the observed

structure and barrier height. Such calculations have been performed and are now

being extended to the transition state [70].

5.2. Complexes with solvent molecules

Tunnelling calculations may help us understand the catalytic activity of solvent

molecules such as water in hydrogen transfer processes. The ionization of weak
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acids is such a process, where the relative rates of hydrogen transfer and solvent

reorganization have been probed experimentally and theoretically, e.g. in the case

of excited phenol- and naphthol-ammonia complexes [71 ± 76] .

In these systems proton transfer from phenol (naphthol) to a hydrogen-bonded

ammonia molecule occurs upon excitation of the aromatic component, provided the

complex contains at least ® ve (three) ammonias. The transfer can be monitored by

¯ uorescence and by multiphoton ionization and typically cannot be characterized by

a single ® rst-order rate constant. The experimental results were originally interpreted

as indicative of a biexponential process, namely proton transfer followed by solvent

reorganization. However, this interpretation left many observations unexplained and

disagreed with the results of our theoretical model study [75] . Our calculations on

excited phenol-(NH3)5 indicate that the solvent reorganization associated with the

proton transfer is a simple barrierless process along a single low-frequency normal

coordinate of the complex with a time constant of the order of a picosecond. Since

the smaller of the two time constants 1/ k derived from the transfer data is about

50 ps, this means that neither this nor the larger time constant of about 350 ps

can be associated with solvent reorganization, in keeping with the observation that

in the corresponding naphthol complex both rate constants are subject to strong

deuterium eŒects.

To ® rm up these conclusions we have extended our original one-dimensional tun-

nelling calculations on the phenol complex [75] to full multidimensional calculations

for single vibronic levels, using the method discussed in this review. The results lead

to mode-speci® c rate constants in the region covered by the excitation wavelength,

the lowest of which, corresponding to the zero-point level, amounts to 2 3 109 s 1

(2 3 108 s 1 for deuterium transfer), comparable to the observed larger time constant

of 350 ps for the undeuterated molecule. There are several antisymmetric modes

coupled to the tunnelling mode and their excitation would tend to increase the rate

of transfer by reducing the corresponding Franck± Condon eŒect, thereby decreasing

the time constant towards the smaller observed value [76] . However, it is not clear to

what extent these modes are excited in the experiment, so that a detailed explanation

of the observed kinetics cannot be given at this time.

Another example is the transfer of a proton between the two tautomers of 7-

azaindole catalysed by a complexed water molecule [77] . In this complex, illustrated

in ® gure 10, the water molecule forms hydrogen bonds with the donor and acceptor

nitrogen atoms, leading to synchronous transfer of two hydrogens. The adiabatic

barrier height relative to the energy of the metastable tautomer, calculated at

the HF/ 6-31G* level, was found to be 26.7 kcal mol
1

= 9325 cm 1 , a value slightly

higher than the result of Gordon [77] ; both values are likely to be too high by several

kcal mol
1
. The transfer, which is exothermic by 13.1 kcal mol

1
= 4580 cm 1, is

greatly accelerated by coupling of the tunnelling mode to several symmetric modes, so

that, for example, at room temperature, the rate constant is 3± 4 orders of magnitude

higher than that of the one-dimensional process. The classical contribution to

the rate is completely negligible at all temperatures of practical interest for both

isotopomers. In ® gure 11 we report preliminary results for the double-hydrogen

transfer rate constants with and without deuteration of the mobile hydrogen atoms.

These results, which predict a lifetime of a few milliseconds for the metastable

isomer in water, show the strong catalytic eŒect of water, which greatly accelerates

the process, as illustrated in ® gure 11, where the dashed line represents the rate

constant of single-proton transfer in isolated 7-azaindole.
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32 W. Siebrand et al.

Figure 10. 7-Azaindole H́2O; the structures (a) and (c) represent the stable and metastable

isomer, respectively, and (b) represents the transition state between them.

5.3. Anharmonic couplings

The applications described in the preceding section are based on ab initio calcu-

lations without free parameters. Speci® cally they invoke the simplifying assumptions

that the transverse modes are harmonic and linearly coupled to the tunnelling mode.

This assumption, which implies the absence of anharmonic terms in the transverse-

mode potential, is di� cult to avoid in an ab initio context, since the available

quantum-chemical codes have great di� culty in dealing with such anharmonicity.

As a result the dynamics cannot be readily extended to anharmonic potentials un-

less freely adjustable anharmonic coupling parameters are introduced, implying a

departure from the ab initio protocol.

The presence of non-negligible anharmonic couplings between the tunnelling
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Proton tunnelling in polyatomic molecules 33

Figure 11. Calculated double-hydrogen transfer rate constants in 7-azaindole H́2O (solid
lines) and the corresponding classical approximation (dot-dash lines). The dashed line

refers to transfer in bare azaindole.

mode and large-amplitude transverse modes can be deduced directly from experi-

ment. A typical example, mentioned in the preceding section, is tropolone [22, 41]

in which the tunnelling splitting in the ¯ uorescent state is observed to decrease

progessively with the level of excitation of low-frequency out-of-plane modes. Since

the molecule remains planar during proton transfer, these modes are not displaced

and thus not linearly coupled to the tunnelling mode. The lowest-order coupling

compatible with the symmetry of the molecule is biquadratic in the two coordinates.

A similar observation has been made for indoline [20] where the ring-puckering

vibration is the tunnelling mode; in this molecule the tunnelling splitting is observed

to increase progressively with increasing excitation of the low-frequency butter¯ y

mode, which is not displaced by the transfer. Anharmonic couplings have also been

invoked to explain tunnelling splittings in methylglycolate [24] .

We now show that these problems can be handled by the formalism developed at

the end of section 3. In a few cases the required anharmonic couplings, chosen so as

to ® t an appropriate set of experimental data, have been compared with calculated

values. To minimize arbitrariness, we only discuss cases where a single coupling

constant can interpret multiple observations. This is the case in tropolone where the
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lowest-frequency mode, x 26 = 37.5 cm 1 , shows a progression v = (0), 2, 4, 6, 8, ..., in

the ¯ uorescence-excitation spectrum for which the splitting decreases from 18.9 cm 1

to 7.2, 4.7, 3.5, and 0.8 cm 1 , respectively [41]. From equation (35) we obtain 10,

5.1, 2.3, and 0.8 cm 1, repectively, if we assume an anharmonic coupling constant

D26 = 26 cm 1 , a value considerably smaller than the theoretically estimated value

of 39 cm 1 [22] .

In indoline, on the other hand, the calculated anharmonic coupling between the

tunnelling mode and the butter¯ y mode is positive, leading to the prediction of an

increase in the splitting with increasing excitation of the latter mode. This is indeed

observed: in the progression v = (0), 1, 2, ..., the splitting increases from (14.6) to

570 and 9000 cm 1, in good agreement with the calculated values of (14.8), 530,

and 11000 cm 1 obtained with the calculated anharmonic coupling parameter of

21 cm 1 [20] .

6. Conclusions

The main conclusion we wish to draw from this work is that for typical hydrogen

transfer processes whereby an XH bond is broken and a new HY bond is formed,

the transfer is dominated by tunnelling at most temperatures of practical interest,

including room temperature. If this fact is ignored, calculated transfer rate constants

may be too small by orders of magnitude. For deuterium transfer the cross-over to

classical transfer occurs at lower temperatures but usually well above room tem-

perature. Thus the observation of an apparently linear Arrhenius plot for hydrogen

or deuterium transfer over a narrow range of temperatures does NOT justify the

conclusion that the transfer is classical; the corresponding Arrhenius slope can thus

not be used to obtain the barrier height.

Deuterium and tritium isotope eŒects are widely used in organic chemistry

and biochemistry to analyse the mechanism of complex reactions. Unfortunately,

the theory used to interpret these results is often of dubious validity. One of

the purposes of the present review is to demonstrate that simple one-dimensional

tunnelling models do not provide a reliable basis for such interpretations. At the same

time we oŒer a method which makes it possible to deal e� ciently with large systems

without invoking untenable approximations. Benchmark comparisons indicate that

of the methods available to date, the instanton method discussed here is clearly the

most accurate and most e� cient; speci® cally, it was found to be about three orders

of magnitude faster than methods based on variational transition-state theory with

semiclassical tunnelling corrections. Contrary to the latter theories, it can provide

mode-speci® c tunnelling splittings and temperature dependent rate constants down

to T = 0 K for almost any system that can be handled by the available quantum-

chemical codes. While routine estimates of rate constants and splittings can be

readily obtained through the use of our DOIT code [27] , the strong dependence of

the results on the calculated barrier heights indicates that a judicious choice among

the available quantum-chemical methods is essential if accurate values are to be

obtained.

The method is designed to deal with multidimensional systems and has been

tested on medium and large molecules, ions and radicals in the gas phase and in

solution. In addition preliminary results have been obtained on complexes with

solvent molecules where the tunnelling involves proton transfer between solute and

solvent. Of particular interest are complexes in which solvent molecules such as

water catalyse intramolecular proton transfer, since such processes are likely to be
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important in biological systems. Testing of the method on such systems is hampered

by the lack of experimental data. That tunnelling is likely to be important in

higher organisms follows from the fact that heavy water is toxic. On the other

hand, bacteria can be deuterium-labelled by immersion in heavy water. Although

substantial deuterium isotope eŒects have been reported for a number of enzymatic

reactions, it is di� cult to interpret these results unambiguously. An important ® rst

step towards such an analysis, would be the integration of the instanton method in

a quantum-simulation protocol, a project that will be the subject of a future report.

Appendix

In this Appendix we provide some mathematical background to the instanton

model. The observation of a ® rst-order rate constant implies that the levels monitored

have a Lorentzian linewidth, which is proportional to the tunnelling probability and

can be represented by an imaginary term (E ) = 2 Im E in units " = 1. We ® rst

consider transfer in a one-dimensional double-well potential U (x) with a barrier

height U 0 at x = 0 and a frequency x 0 at the bottom of the wells. The transfer rate

constant is the Boltzmann average over the initial states and can be approximated

quasiclassically by

k = Z
1

0

1

0

dE q (E ) (E ) exp ( b E ), (A 1)

where b = 1/ kBT , q (E ) is the density of ® nal states, and

Z0 =

1

n= 0

exp ( En b ) ’ (2 sinh x 0 b / 2)
1

(A 2)

is the partition function. For E < U0 the tunnelling probability is given by [36]

q (E ) (E ) = exp 2

x2

x1

dx [2(U E )]
1/ 2

= exp [ 2S(E )] , (A 3)

where x1,2 are classical turning points for energy E and S(E ) is the classical action.

For E & U 0 the top part of the barrier can be represented by an inverted parabola

which leads to [78]

q (E ) (E ) =
1

1 + exp [ 2 p (E U0 )/ x * ]
, (A 4)

where i x
*

is the imaginary frequency at the top. This expression goes to unity for

high energies and connects smoothly to equation (A 3) in the tunnelling region.

In the integral of equation (A 1) the energy-dependent factor q (E ) (E ) competes

with the Boltzmann factor. In the tunnelling region, we have from equations (A 1)

and (A 3)

2
¶ S(E )

¶ E
= b , (A 5)

which determines the energy E
*
, where S(E ) reaches its minimum value. Alternatively

we have
¶ S(E )

¶ E
=

x2

x1

dx

[2(U E )]1/ 2
= 1

2 H (E ), (A 6)

where H (E ) is the period of the motion of the tunnelling particle in the upside-

down potential U . Combining these results, we ® nd that b = H (E
*
) de® nes the
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energy value that dominates the integral (A 1). Evaluation of (A 1) by the method

of steepest descent yields

k =
exp ( 2SE b E

*
)

Z0 f 2 p [ ¶ H (E )/ ¶ E ]E * g 1/ 2
, (A 7)

where SE is the Euclidian action

SE =

b

0

d s H [x( s )] , (A 8)

with the Hamiltonian H = Çx2 / 2 + U replacing the usual Lagrangian since the

integration is over imaginary time s = it. Since H (E
*
) & 2 p / x

*
, the corresponding

extremal tunnelling trajectory applies only below the cross-over temperature T
*

=

2 p / x
*
kB .

To generalize this approach to multidimensional systems, we rewrite equa-

tion (A 1) as a sum over states

k = Re Z
1

n

exp ( b Re En ) Im En , (A 9)

which can be rewritten in the form [35]

k = 2 b
1

Im Z / Re Z . (A 10)

The advantage of this formulation is that the partition function can be expressed in

terms of integrals over all possible paths, each path modulated by an appropriate

phase factor. The resulting path integral allows straightforward generalization to

multidimensional transfer.

To show this, we start from the evolution operator that expresses the amplitude

at time t of a particle moving in a one-dimensional potential U (x) and express it as

a path integral

K (x, x0, t) = h x(t) j exp ( iH t) j x(0) i = D[x(t)] exp (iS[x(t)] ), (A 11)

where S is the classical action along a speci® ed path

S[x(t)] =

t

0

dt
0
L(x, Çx), (A 12)

L = 1
2

Çx2 U (x) being the Lagrangian. To proceed, it proves convenient to change

variables. We note that expansion of the evolution operator in terms of the eigen-

functions u m of H , namely,

K (x, x0 , t) =

m

u m[x(t)] u
*
m[x(0)] exp ( iEmt), (A 13)

leads to a form equivalent to the density matrix

q (x, x
0
) =

m

u m(x
0
) u m(x) exp ( b Em) (A 14)

if we make the substitution it ® b . The transformation t ® i s , x ® x, Çx ®
i Çx, U (x) ® U (x), and E ® E formally turns the barrier upside down. The

result is that the density matrix can now be written as a path integral for the
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Euclidian action

q [x( s ), x(0)] =

x( s )

x(0)

D[x( s )] exp f SE [x( s )] g , (A 15)

SE [x( s )] =

b

0

d s H [x( s ), Çx( s )] . (A 16)

This means that the partition function

Z = Tr q = dx q (x, x) (A 17)

can be expressed as a path integral over closed trajectories x( s ) = x(0):

Z = dx(0)
x(0)= x( s )

D[x( s
0
)] exp f SE [x( s

0
)] g . (A 18)

This equation can be directly generalized to an arbitrary number of degrees of

freedom. For our set of vibrational coordinates x, y the result is

Z = dx(0) dy(0)
c

D[x( s )]D[y( s )] exp f SE [x( s ), y( s )] g , (A 19)

where the second integration is over closed paths x( s ) = x(0), y( s ) = y(0).

For the multidimensional system (A 19), the instanton trajectory can be calculated

by solution of a set of n + 1 classical equations of motions, if n is the number of

coupled transverse modes. Since this is generally impractical except for the smallest

systems, one normally introduces approximations at this point. For instance one

can lump all transverse modes together and use y as an eŒective-mode coordinate

or one can treat these modes collectively as a heatbath. However, neither of these

approaches is satisfactory for molecules, where the coupled modes span a wide

range of frequencies and where their eŒect can help or hinder tunnelling depending

on their symmetry. To obtain a more appropriate simpli® cation, we start with the

assumption that all transverse modes are harmonic and are linearly coupled to the

tunnelling mode. For a particular mode y with a coupling constant C this leads to

a classical equation of motion for a forced harmonic oscillator:

Èy = Cf (x) x
2
y , (A 20)

where f (x) is an arbitrary function of x which in our case equals x or x2 .

This forced-oscillator equation can be solved analytically for appropriate periodic

boundary conditions:

y( s ) =
c ( b s )

c ( b )
y(0) +

c ( s )

c ( b )
f y( b )

+ C

b

0

d b
0
f [x( b

0
)] c ( b b

0
) g

C

s

0

d b
0
f [x( b

0
)] c ( s b

0
), (A 21)

where c (z ) = [ sinh ( x z )]/ x . The additive contribution of this oscillator to the

Euclidian action can be obtained by substitution of the result into an equation of
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the form (A 7):

d SE =

b / 2

b / 2

d s f Çy
2
/ 2 + x

2
y

2
/ 2 + C f [x( s )]y g . (A 22)

The resulting Gaussian integrals can be evaluated analytically. This eliminates the

explicit dependence on the transverse coordinates, so that the problem becomes

eŒectively one-dimensional with time-retarded interactions expressing the memory

eŒect of the coupled transverse modes on the proton transfer. The time-retarded

potential is represented by the kernel N ( s s 0 ) in the expression

SE [x( s )] =

b / 2

b / 2

d s f Çx
2
/ 2 + Ua (x) + C

2
/ 4 x

3

3
s

s

d s
0 df [x( s )]

dx

df [x( s 0 )]

dx
Çx( s ) Çx( s

0
) N ( s s

0
) g , (A 23)

where

UV ,ad = U (x) + 1
2
[ x C

2
x

2
f (x)

2
] (A 24)

is the vibrationally-adiabatic potential. For the complete expression of the kernel,

we refer to the original literature [17, 18] . In practice it is often su� cient to

consider limiting cases. For high-frequency transverse modes or low temperatures,

only zero-point motions contribute. Then the kernel simpli® es to

N ( s s
0
) = exp ( x j s s

0 j ). (A 25)

For low-frequency transverse modes ( x ¿ X 0 ) that are thermally activated, the

kernel will be temperature-dependent but eŒectively independent of s s 0 :

N ( s s
0
) = coth ( b x / 2). (A 26)

By de® nition, the instanton trajectory minimizes SE and thus satis® es the Euler±

Lagrange equation

Èx( s ) + ¶ UV ,ad / ¶ x + (C
2
/ x

2
)

b / 2

b / 2

d s
0
N ( s s

0
)x( s

0
) = 0, (A 27)

where x( s ) is a periodic function x( s ) = x( s + b ). So far the instanton trajectory has

been found explicitly only for a few model one-dimensional potentials and within

limited temperature ranges depending on the parameters involved. In the simple case

where the symmetric double-well potential formed by two intersecting parabolas is

coupled linearly to a totally symmetric transverse normal coordinate

U (x, ys) =
1
2 x

2
0 ( j x j D x)

2
Cs( j x j D x)ys +

1
2 x

2
s y

2
s , (A 28)

the resulting 2 3 2 matrix can be diagonalized by rotating the coordinates over an

angle u such that [38]

tan
2

u =
x 2

+ x 2
0

x 2
0 x 2

,

x
2
± =

1
2 x

2
0 f ( r

2
1) ± [ ( r

2
1)

2
+ c

2
]
1/ 2 g

r = x s/ x 0,

c = 2C/ x
2
0 . (A 29)
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This leads to the instanton action

SI = 2 D x
2
/ [ x

1
+ cos

2
u coth ( b x + / 4) + x

1
sin

2
u coth ( b x / 4)] . (A 30)

For a relatively weak coupling and low transverse-mode frequency, the sine and

cosine functions can be simpli® ed, leading to

SI ’ 2 D x
2
/ [ x

1
0 coth ( b x + / 4) + ( c

2
/ x s) coth ( b x / 4)] (A 31)

’ S
0
I / [1 +

1
4 c

2
( x 0 / x s ) coth ( b x s/ 4)] ,

S
0
I = 2 D x

2
x 0 tanh ( b x 0/ 4) (A 32)

being the action in the one-dimensional potential, which leads to equation (22).
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